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Bilayer graphene has been predicted to host a moiré mini-
band with flat dispersion if the layers are stacked at specific 
twist angles known as the ’magic angles’1,2. Recently, twisted 
bilayer graphene (tBLG) with a magic angle twist was reported 
to exhibit a correlated insulating state and superconductiv-
ity3,4, where the presence of the flat miniband in the system 
is thought to be essential for the emergence of these ordered 
phases in the transport measurements. Although tunnel-
ling spectroscopy5–9 and electronic compressibility measure-
ments10 in tBLG have found a van Hove singularity that is 
consistent with the presence of the flat miniband, a direct 
observation of the flat dispersion in the momentum space 
of such a moiré miniband in tBLG is still lacking. Here, we 
report the visualization of this flat moiré miniband by using 
angle-resolved photoemission spectroscopy with nanoscale 
resolution. The high spatial resolution of this technique 
enabled the measurement of the local electronic structure of 
the tBLG. The measurements demonstrate the existence of 
the flat moiré band near the charge neutrality for tBLG close 
to the magic angle at room temperature.

An implication of an electronic band with flat momentum-space 
dispersion is the singularity in the density of states, leading to 
atomic-like discretization of the energy levels reminiscent of the 
Landau levels in the quantum Hall regime. If the Fermi level (EF) of 
the material is tuned to lie at these singularities, the system can pre-
fer to reduce the total electronic ground state energy via an energy 
gap opening that triggers the emergence of exotic quantum phase 
transitions. Thus, efforts to engineer flat bands around EF are an 
active research focus where major advances are being made in vari-
ous lattice systems, including in the moiré superlattices with gapless 
and gapped Dirac Hamiltonians.

Graphitic systems are among the families of materials that can 
host flat electronic bands11–17, with reports of high densities of states 
near van Hove singularities at high binding energies and reduction 
of band dispersion in rhombohedral multilayers near charge neu-
trality. More recently, tBLG has emerged as a promising system due 
to its excellent tunability: in the degree of interlayer hybridization 
with twist angle18–20 and in the possibility of using in situ electrostatic  

gating for adjusting EF to occupy the flat moiré minibands or to 
achieve commensurate filling. The quenching of quasiparticle 
kinetic energy following the reduced miniband bandwidth at the 
magic angle is conducive to the emergence of interaction-driven 
phase transitions. Partial filling of the flat miniband in tBLG has 
resulted in the observation of correlated insulator3, superconductiv-
ity4,21,22 and orbital magnetism22. Richer physics may also arise by 
accounting for the sample environment, such as the ferromagne-
tism in magic angle tBLG with alignment to the hexagonal boron 
nitride (hBN) substrate23,24.

Here, we visualize the weak dispersion of the flat moiré miniband 
in tBLG near the magic angle twist with angle-resolved photoemis-
sion spectroscopy with nanoscale resolution (nanoARPES). ARPES 
provides a unique capability to resolve the k-space dispersion of the 
flat band. The high spatial resolution of nanoARPES enabled by the 
capillary focusing (~1 µm beam spot size, see Methods) is benefi-
cial to counteract local structural inhomogeneity within the sample. 
The flat band is present even at room temperature near EF around 
the original �K

I
 points of the constituent graphene monolayers.

Figure 1a shows the configuration of the sample. The sample was 
fabricated via a tear-and-stack method for controlled twist angle 
combined with stack inversion (see Methods). This method allows 
production of uncapped tBLG on a flat hBN flake to minimize sur-
face roughness (also see Supplementary Fig. 3b) and thus achieve 
improved momentum resolution during the photoemission spec-
troscopy. Figure 1b is an optical image of such a graphene sample 
on hBN, where the borders of the isolated monolayers and the tBLG 
region are indicated as determined from atomic force microscopy 
(AFM) in Fig. 1c. Scanning photoemission microscopy (SPEM; 
Fig. 1d,e) that maps the real space distribution of generated pho-
toelectrons from the valence band of graphene and hBN confirms 
the sample configuration. The intensity of the signal arising from 
graphene correlates with the layer number: the middle region has 
a stronger signal than the two sandwiching regions, matching the 
expected location of the monolayer and tBLG segments as demar-
cated in Fig. 1b. Similarly, the reduction of the hBN signal also 
correlates qualitatively with the attenuation from the different gra-
phene thickness at each segment.
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Figure 1f,g shows the ARPES spectra collected from the lower 
graphene monolayer and the tBLG from locations as indicated in 
Fig. 1e. The monolayer spectrum shows the typical linear band dis-
persion characteristic for graphene and the sample is approximately 
charge neutral as the Dirac point is situated close to the Fermi level. 
Faint Dirac cone replicas are also seen surrounding the primary 
cone. The formation of these replicas is a result of the superlattice 
periodicity between hBN and graphene25 (further details are dis-
cussed in Supplementary Fig. 4). On the other hand, the spectrum 
from the tBLG area shows a sharp feature near the Fermi level cor-
responding to the flat electronic band. Subsequent discussion will 
be focused on the tBLG data (microscopy in Fig. 2 and nanoARPES 
in Fig. 3) that are collected from this location.

It is important to fabricate the twist angle of the tBLG close to 
the first magic angle (~1°) as previous ARPES measurements on 
tBLG with other much smaller20 or larger19,26,27 twist angles did not 
observe any flat band signatures. Also, the twist angle in tBLG is 
sensitive to disorder, strain and temperature treatment that may 
alter the local twist angle from the intended design6. To confirm 
the local twist angle at tBLG sites where the flat band was observed 
in nanoARPES, we performed microwave impedance microscopy 
(MIM) imaging after completing the nanoARPES measurements 
(Fig. 2, also see Supplementary Fig. 3).

The MIM was measured exactly at the location where we 
observed the flat band from nanoARPES as shown in Figs. 1g and 3.  
This method, combined with the fact that MIM was done after 
nanoARPES, ensured that the twist angle that we determined rep-
resented the actual sample condition during the nanoARPES mea-
surement. Inhomogeneity of the sample at other locations elsewhere 
is not an issue for our experiment. Likewise, the fabrication details 

and processing before the nanoARPES measurement (for example, 
the absence of top hBN and pre-nanoARPES annealing) are not rel-
evant in the MIM imaging.

The imaginary part of the complex microwave response 
(MIM-Im) in general increases monotonically as a function of the 
local sample conductivity28. Therefore, MIM-Im serves as a viable 
means to probe the moiré superlattice as an alternative to topo-
graphic imaging (Supplementary Fig. 2) and to conductive AFM 
mode while not requiring grounding electrodes. Figure 2a shows 
the real space MIM-Im map of the tBLG location with the flat band 
feature. The MIM-Im signal presents a periodic modulation with 
sixfold rotational symmetry from the moiré pattern, a result of the 
misalignment of the constituent graphene monolayers. From the 
fast Fourier transform of the image (Fig. 2b), we can deduce an 
averaged real-space periodicity of 14.7 ± 0.4 nm, corresponding to 
a graphene/graphene twist angle of θ = (0.96 ± 0.03)°. Such peri-
odicity can also be well-resolved directly in the line profile of the 
signal (Fig. 2c,d).

Figure 3 shows the photoemission spectra of the tBLG around 
the �K

I
 points of the original Brillouin zone (BZ) from the constitu-

ent monolayers. The flat electronic bands are present near EF, as 
also visualized experimentally along the various momentum cuts 
of the spectra in Fig. 3c–f. Here, the cutting geometries are shown 
as the inset in each panel following the schematic in Fig. 3a, where 
we also show the construction of the mini Brillouin zone (mBZ, 
in purple) of the tBLG from the original monolayer graphene 
BZs (red and blue). At the Fermi surface, the signal from the flat 
band is distributed around two intensity centres (Fig. 3b, top left). 
These distributions may originate from the states near the �K

I
 point 

of the constituent upper and lower monolayer graphene, where the  
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Fig. 1 | tBLG near magic angle twist on hBN substrate. a–c, Schematic illustration of the tBLG/hBN/doped Si sample (a), bright field optical micrograph 
(b) and AFM image of the sample (c). The boundary of each segment is indicated as follows: blue, lower graphene monolayer; red, upper graphene 
monolayer; purple: tBLG area. d,e, SPEM image generated from real space mapping of the valence band spectra and integrating the signal of hBN (d) 
and the signal of graphene (e). A larger area scan covering the entire hBN flake is given as the inset in d. The approximate intensity corresponding to 
monolayer and tBLG is marked in the colour scale of e. f,g, The energy-momentum band dispersion around the �K point of lower graphene monolayer (f) 
and tBLG with local twist near magic angle (g). These spectra were measured at the locations marked with blue and purple circles in e. The flat band in g is 
indicated with a purple arrow.
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features from the lower monolayer appear to be dimmer due to pho-
toelectron attenuation19.

Previous calculation of the band structure in magic angle tBLG 
predicted that the flat band feature should exist across the whole of 
the mBZ of the tBLG (ref. 3). In agreement with the calculations, our 
nanoARPES measurement shows that the flat band subtends the 
entire area of the mBZ. This can be seen in Fig. 3b (top row), where 
the flat band feature at the Fermi surface covers the entire area of the 
mBZ (the mBZ size is shown as the purple hexagon in the insets of 
Fig. 3b for comparison). The flat band subtends a width of ~0.1 Å−1  
along kx, which is around twice as large as the �κ � �γ � �κ0

I
 width of 

the mBZ of ~0.06 Å−1. The wide momentum extent of the flat band 
is consistent with the strong real space localization of carriers occu-
pying these states. Such extendedness of the flat band states, along 
with the small outgoing branches away from the �K

I
 points, can also 

be reproduced in the ab initio-informed tight-binding simulation 
of the spectral function (Fig. 3b, top right). We have also elimi-
nated the possibilities that the flat band in our tBLG originates from 
surface roughness (Supplementary Fig. 3), van Hove singularity 
around the hybridization gap (Supplementary Fig. 5), the bottom of 
the dispersing band (Supplementary Fig. 6), detector response issue 
and states from the graphene/hBN interface (Supplementary Fig. 7).

At higher binding energies, the equal energy cuts and the band 
dispersions also show the emergence of multiple Dirac cones.  
This observation indicates the hybridization of the Dirac cones  
of the two monolayers due to a strong interlayer coupling of the 

constituent monolayers, as is expected for small twist angles and the  
periodic repetition of the moiré mBZ. This is different from ‘decou-
pled’ bilayer graphene at large twist angles, where the band disper-
sion can be approximated by the two non-perturbed bands of the 
individual monolayers. Moreover, the periodic potential from the 
tBLG moiré superlattice is responsible for the avoided gaps that fur-
ther split the bands19. Such emergence of extra bands away from 
the Fermi level has also been observed in other tBLG on non-hBN 
substrates19,27, although in our sample the hybridized bands formed 
at lower binding energies due to the smaller twist angle.

Using the same choice of axes as for Fig. 3c,e, we performed a 
simulation of the spectral function and the results are shown in  
Fig. 3g,h (see Methods and the Supplementary Information for 
details). The simulated spectrum can reproduce qualitatively the 
salient features of the ARPES band dispersion, including the flat 
band at EF and the emergence of multiple Dirac cones.

We compare the uniqueness of our flat band observation in tBLG 
relative to that in other graphitic systems in the following. Some of 
the previously observed flat state near the top of the valence band 
is based on multilayered rhombohedral stacking12,15,17, in which 
the massive character of the state is explained by a model where 
the band edge dispersion decreases with increasing layer num-
ber. Several other studies11,13,16 are based on epitaxial graphene on 
SiC(0001), where the degree of the band flatness is derived not 
from symmetry considerations but from the special environment 
of the substrate or doping coverage, thus creating a particular  
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combination of hopping parameters and field gradient strength of 
the interface. Meanwhile, the flat band in tBLG arises from sym-
metry considerations due to the moiré potential from the twisting. 
The flat band in tBLG occurs only when the bilayer is twisted to 
magic angle (compare with Supplementary Fig. 5 for θ = 3.5°). No 
uniform stacking order in bilayer graphene (for example AB or AA 
stacking) will give rise to a flat band. Such moiré physics is absent 
in the flat band of graphitic systems in previous studies. In particu-
lar, the moiré physics in magic angle tBLG has enabled the striking 
observations of novel correlated insulator states and superconduc-
tivity that are attributed to the emerging flat band and it has been 
the most active research topic in current condensed matter physics

Although detailed scanning tunnelling microscopy measure-
ments have been performed on magic angle tBLG (refs. 6–9), qua-
siparticle interference is only available for large angle tBLG (ref. 29).  
A direct visualization of the flat band dispersion in a moiré super-
lattice using nanoARPES, such as that presented in our work, 

would therefore be beneficial for a more quantitative understand-
ing of the moiré physics in magic angle tBLG. It is thus also of 
interest to perform detailed nanoARPES studies on other moiré 
superlattice-induced flat bands in related van  der Waals hetero-
structure systems, including their behaviour at different filling fac-
tors with in situ electrostatic gating30,31.
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Methods
Fabrication and structural characterization. We followed the tear-and-stack 
fabrication method to control the twist angle32,33. The step-by-step process is 
illustrated in Supplementary Fig. 1. We exfoliated a monolayer graphene and a 
20 nm thick hBN flake on a Si substrate with 285 nm thick SiO2 film. We then used 
a stamp with polypropylene carbonate (PPC) coating. All pick-up processes were 
performed at 45 °C. We first picked up the hBN with the stamp and used the flake 
to pick part of the monolayer graphene. The substrate, mounted on a rotation stage, 
was then rotated by an angle of ~1.1°. The remaining monolayer segment was then 
picked up to overlap with the monolayer already on the hBN, producing a tBLG. 
The PPC film was peeled from the stamp and transferred onto a clean highly doped 
Si substrate. Finally, the sample was annealed in vacuum at 250 °C for 3 h to remove 
the PPC film.

NanoARPES measurement. The sample was transported to the Microscopic and 
Electronic Structure Observatory (MAESTRO) at the Advanced Light Source 
where it was inserted in the nanoARPES UHV endstation with a base pressure 
lower than 5 × 10−11 mbar. The sample was annealed at 150 °C for 24 h prior to 
the measurement in order to desorb adsorbates. The nanoARPES measurement 
was performed with capillary focusing using a photon energy of 95 eV (except for 
Supplementary Fig. 4a–d which was measured at 147 eV) and a beam spot size of 
approximately 1 µm. The data were collected using a hemispherical Scienta R4000 
electron analyser. The net energy resolution of the nanoARPES data was around  
34 meV. All measurements were carried out at room temperature.

Scanning probe microscopy. After completing the nanoARPES measurement, 
the sample was collected and MIM measurement was performed at ambient 
conditions without re-annealing to preserve the twist angle and the sample 
condition. The MIM characterization was carried out with a modified Asylum 
MFP-3D AFM with commercial ScanWave electronics and coaxially shielded 
probes (PrimeNano Inc)34. A microwave frequency of 2.9 GHz was sent to the tip 
followed by the collection of the reflected signals. The MIM signal was measured 
concurrently with the topographic imaging. The MIM measurement was 
conducted in contact mode with sub-10 nm lateral resolution. Additional AFM 
imaging to measure the topography was also performed with Asylum Cypher 
VRS and Park NX-10 instruments.

Spectral function simulation. The unfolded band structure of tBLG was 
calculated using a tight-binding model informed from ab initio density functional 
theory calculations for the atomic and electronic structures. A twist angle of 0.97° 
containing a total of 14,288 atoms in the supercell was used in the simulation. The 
atomic structure calculation included the relaxation effects through LAMMPS 
molecular dynamic simulations35 using force fields tailored to reproduce ab initio 
total energies for different local stacking configurations36–38. For the electronic 
structure we used an effective nearest neighbour hopping energy of |t0| ~ 3.1 eV 
corresponding to a Fermi velocity of ~1.05 × 106 m s–1 within the F2G2 model39 for 
the intralayer hopping terms in graphene. Our model for the interlayer coupling 
for the atomic relaxation and tight-binding electronic structures was designed 
to give the bandwidth minimum near ~1.05° (evidence for lattice relaxation in 
minimally twisted tBLG from a similar sample fabrication method is available 
in Supplementary Fig. 8 and see Supplementary Fig. 9 for the band structure in 
the folded-zone scheme). The spectral function calculation followed the theory 
and band-unfolding scheme described previously40, with the spectrum projected 
onto the BZ of the lower graphene monolayer. To reproduce the asymmetry in the 
spectral function intensity owing to the upper and lower monolayer graphene, we 
assigned an intensity weight ratio of 2:1 in the calculation. The spectral function 
also accounted for the Fermi–Dirac distribution to reproduce the broadening near 
EF. The equal energy cut was displayed by incorporating post-processing Gaussian 
broadening of the momentum space and a cutoff energy of ±20 meV around the 
Fermi level in energy space.

Data availability
The data that support the plots within this paper and other finding of this study 
are available from the corresponding author upon reasonable request. Simulation 
parameters are provided in the Supplementary Information and can be used as in 
LAMMPS or with the KIM MD potential database.
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